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Motivation

» Given its dynamical inertia, certain slow modes of global
ocean circulation (e.g., AMO) are expected to be predictable
on the interannual to decadal timescale

From Trenberth & Shea, 2006:
Annual SST anomalies averaged
over the North Atlantic (0 to 60
b S/ N, 0 to 80 W) for 1870-2005,
P relative to 1901-1970 (C)

» A pre-requisite to using the “extended predictability of slow
modes” is a successful assimilation of data to estimate the
state of the ocean including the phase and amplitude of the
slow modes.

» Given recent improvements in methodology and other reasons,
we have chosen to develop an ensemble DA system for POP
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Atlantic Multi-decadal Oscillation
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Atlantic Multi-decadal Oscillation

Power Spectral Density
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Assimilation Algorithm |

For ob. y,p with ob+representation error o,p,
and given prior ensemble y = h(x,,) (bold: ensemble vector)

m=1,... state_dim. Use least squareS'
» Compute posterior spread: — = 3+ + -
9po Opr Uob
» Compute posterior ensemble mean: i’;" = y‘” + Yob
po ob

» Compute ob. incr. for ensemble members (shlft & compact):

Ay = Ypo - ypr + %F::AYPr
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Assimilation Algorithm |

For ob. y,p with ob+representation error o,p,
and given prior ensemble y = h(x,,) (bold: ensemble vector)
m=1,... state_dim. Use least squareS'

» Compute posterior spread: U% = 02 + =
po

pr ob

yPO fo +y:>b

o2~ o

» Compute posterior ensemble mean:
po Tob

» Compute ob. incr. for ensemble members (shlft & compact):

Ay = Ypo - ypr £ AYpr

Opr
» Regress ob. incr. onto state variable incr.
Axm = B(y,xm)Ay
where B(y,xm) = cov(y, xm)/o-,rZ)r

> Xm,po = Xm,pr + ﬁ(Ya Xm) (Ypo Ypr)
> Axy ,po — = Axp, or + ﬂ(ya Xm) - h (Axm Pf)
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Assimilation Algorithm Il

FIG. 1. A schematic depiction of the sequential filter algorithm. The forward observation operator for the first
observation, h,, is applied to the ensemble state vector, &', to produce a prior ensemble approximation, y', of the
observation. Observation increments, Ay', are computed using the observation value, y', and error variance, O%J.
and regression is used to compute increments for the state, ﬁM(y‘. %')Ay". The state is updated by adding the
increments to produce & and the process is repeated for each observation in turn.

(From Anderson & Collins, 2007)
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Tippet et al., 2003 compare 3 deterministic SRFs
ETKF: 22 =2 T =2zfCc(r+1)7%/2 (16)
EAKF: Z2 = AZf =Z'C(1+T1)"Y2G1F7Z" (20)

From the point of view of flow instabilities,
there are important differences:

» Analysis perturbations in ETKF are linear combinations of
(ens. no. of) forecast perturbations (each state vector
component is similarly reconstituted/recombined.)

» Different state vector components of ensemble perturbation

scale differently with EAKF (the adjustment matrix is of size
state_dim x state_dim.)

> AXpmpo = DX pr + B(Y, xm)‘;‘;"’ h (AXpm, pr)
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Spatio-Temporally Adaptive Inflation in DART

» Use yop, ¥, and o,p via Bayes theorem
to improve A(xm, t) [Anderson, 2009]
» Prior PDF for \(xp,) is multivariate normal.
Sequentially update each inflation factor
> Assume cov(A(Xm, ), AM(Xm,)) = cov(Xmy s Xm,)
» No time evolution of inflation factor (Persistence)
» Assuming no bias, obtain posterior mean of A using

approximations in Bayes formula; hold o) fixed

N(Apo, 03) = \/;ﬁ exp (—D?/26%) N(Apr, 03) where

D =y, — yob| and 0 = {/Apo02, + 02,
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Setup of the DA Experiment

» LANL POP with Data Assimilation Research Testbed
[Anderson et al., 2009]

» Corrected CORE (Coordinated Ocean-ice Reference

Experiment) version 2 Interannual Forcing
[Large and Yeager, 2009, Griffies et al., 2009]

» Weak salinity restoring; strong SST restoring under ice

» 20 member ensemble with spatiotemporally adaptive inflation
[Anderson, 2009]; localization radius of 1100 km

» ICs from Jan 1 of different years of a control run
with Normal Year Forcing

» World Ocean Database observations starting Jan 1, 1990

» An identical control ensemble run, but with no assimilation
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Analysis of 1990-91 DA Experiment |

DA system performs poorly with too few obs. (< 10%) being
contained in the ensemble

Observations Contained within Rank Histogram
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Analysis of 1990-91 DA Experiment Il

Longitude
Longitude

300 150 200 20

Time-avgd difference wrt NOAA OI SST v2 Left: Control Run;
Right: Assimilation Run. Cold bias in tropics and midlatitudes and

warm bias at high latitudes and upwelling regions. No Significant
Improvement with DA.
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Improvements to the DA System

Percent of regional obsenvations

» Enhance spread (S) based on background variability (¢):

S—(1-¢c)S+co

»  Analogous to hybrid methods to boost rank of the forecast error covariance matrix: Boost

under-estimated, ensemble-based, flow-dependent covariance with an a priori, background estimate.

» Simple bias correction (not yet analyzed)

» Significant improvements in performance of DA system
» Larger number of obs. contained
» Significant reduction in SST errors

Observations Contained within Rank Histogram
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Improved Assimilation |
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Inflation Probability Density Function
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Hindcast
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Conclusions

» Modifying spread to include a small fraction of background
variability can be useful to improving ensemble diversity

» Analogous to hybrid methods to boost rank of the forecast
error covariance matrix.
» While the most serious disadvantage may seem to be a
deleterious effect on the spread-skill relation, hindcasts using
the ensemble-mean assimilated state shows significant skill

We were able to successfully assimilate WOD observations
using an ensemble filter and only a small ensemble.
Improved initialization shows skill
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Dependence on Amplitude of Specified Background
Variability
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